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GP REGRESSION
Gaussian process (GP) is a stochastic process
{f(x) : x ∈ X}. In Bayesian nonparametric re-
gression setting, GP with kernel K(·, ·) is used as
a prior on function as:

Y = f(x) + ε

f(·) ∼ GP(µ(·), K(·, ·))

ε ∼ N(0, σ
2
).

The posterior distribution can be made tractable
by assuming normally distributed error term.
The posterior predictive distribution for test
points X∗ is a multivariate normal distribution
with following mean and covariance matrix.
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GOAL
Image classification is a common machine learn-
ing task with numerous tools available. We ex-
plore whether if we can learn a probability dis-
tribution generating the images and further use it
for classification. We can summarize our goal as
the following.

• Learn the joint distribution of the pixel in-
tensities using Gaussian process (GP) re-
gression by assuming spatial correlation be-
tween the pixels.
• Develop an efficient GP regression training

algorithm for replicated responses on few
unique covariate points. This special struc-
ture is present in the image data.
• Use this joint distribution in a Bayes clas-

sifier to classify images. We relax the con-
ditional independence assumption of naive
Bayes classifier and investigate improve-
ment in the classification accuracy.

GP REGRESSION MODEL FOR IMAGE

We adopt a functional data type model. Let Yij(x, z) be the pixel intensities of the jth image in the ith

class. The pixel intensities are assumed to be a fixed function f(·) of the spatial location of the pixels.
A random error function introduces variation between the images. A white noise measurement error is
considered.

Yij(x, z) = f(x, z) + gij(x, z) + εij(x, z)

f(·) ∼ GP(0, Ki)

gij(·) ∼ GP(0,Wi)

εij(x, z) ∼ N(0, σ
2
).

For (28×28) images, only 1000 training images will produce a training data of size 784, 000. We develop
a computationally efficient algorithm to fit such data by considering a special case of the covariance
structure where Wi is taken to be diagonal covariance kernel. We write a ANOVA type model since the
observations are coming from p2 unique location.

Y =Af + ε.
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This representation leads to reduction inO(n3p6) computation complexity toO(p6) only. This algorithm
is also applicable when performing general GP regression with replications. If there is N total training
data but only N∗ unique covariate values then computational complexity will be O(N∗3) rather than
O(N3). We compute the posterior mean and the covariance matrix which is further used for classifica-
tion.

DISCUSSION
• We show how we can estimate the joint dis-

tribution of the pixel intensities using GP
regression which requires small handful of
hyperparameter estimation.

• A computationally feasible method for fit-
ting GP regression for replicated data is de-
veloped.

• Posterior is used to classify images in a
Bayes classifier framework. We applied this
method on (MNIST) dataset. It provides
about 87% accuracy on the test set. Where
the naive Bayes classifier achieves about
53% accuracy. This shows that replacing
the conditional independence assumption
by spatially correlated pixels boosts perfor-
mance.

• Stationary kernels (Gaussian or Laplace)
were tried. Use of non-stationary kernels
and more flexible error assumption might
improve the results.

• Although only image data was considered,
this is a general method for functional data
in any dimension. We are working on more
generalized framework of classifying irreg-
ular/regular functional data.

LEARNING IMAGE AND CLASSIFICATION
We obtain the posterior distribution of the pixels on the same spacial locations separately for each class
which considered as the joint distribution of the pixel intensities, i.e. the image. We applied this method
on the MNIST dataset.

Figure 1: Posterior means (Gaussian Kernel) Figure 2: Posterior means (Laplace Kernel)

This posterior enables us to use the Bayes classifier.
H(ỹ) = argmax

c∈{1,2,...,m}
PY∗ (ỹ|y1,y2, ...yn, C = c)P̂ (C = c).
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